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Abstract
We propose a dynamic penalization framework for recovering rank-1 solutions in sequential

semidefinite programming (SDP) relaxations. Obtaining rank-1 solutions—crucial for recovering
physically meaningful solutions in many applications—becomes particularly challenging in dy-
namic environments where problem parameters continuously evolve. Our framework operates in
two interconnected phases: the learning phase dynamically adjusts penalty parameters to enforce
rank-1 feasibility based on feedback from the decision phase, while the decision phase solves the
resulting penalized SDP relaxations using the penalty parameters specified by the learning phase.
To accelerate rank-1 recovery across sequential problems, we introduce a meta-learning model that
provides informed initializations for the penalty matrices. The meta-learning model leverages his-
torical data from previously solved tasks, eliminating the need for externally curated datasets. By
using task-specific features and updates from prior iterations, the meta-model intelligently initial-
izes penalty parameters, reducing the number of iterations required between the two phases. We
prove sublinear convergence to rank-1 solutions and establish low dynamic regret bounds that im-
prove with task similarity. Empirical results on real-world rank-constrained applications, including
the Max-Cut problem and Optimal Power Flow (OPF), demonstrate that our method consistently
recovers rank-1 solutions.
Keywords: Online Optimization, Semidefinite Programming, Dynamic Penalization, Meta-Learning,
Rank Constraint.

1. Introduction

Semidefinite programming has emerged as a powerful framework for addressing nonlinear and
nonconvex optimization problems, particularly in polynomial optimization and quadratically con-
strained quadratic programs (QCQPs). A wide range of optimization problems, including discrete
optimization problems, can be reformulated or approximated as polynomial optimization problems,
which are further transformable into QCQPs using auxiliary variables and constraints (Madani et al.,
2020; Wang, 2022). By relaxing the nonconvex QCQP constraints into semidefinite problem, SDPs
enable exact solutions or tight lower bounds on the objective (Boyd et al., 1994; Boyd and Van-
denberghe, 2004). However, enforcing rank-1 constraints in these relaxations remains challenging.
Convex SDP relaxations yield low-rank solutions efficiently, but achieving exact rank-1 solutions
often requires penalty terms that drive nonzero eigenvalues to zero, promoting rank-1 feasibility
(Pataki, 1998; Sojoudi and Lavaei, 2014).
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This challenge is further compounded in sequential optimization settings, where evolving prob-
lem parameters require solving a series of similar instances, as seen in power systems (Dall’Anese
et al., 2017), communication networks (Chen and Lau, 2011), and online learning (Mokhtari et al.,
2016). Solving each instance independently is computationally prohibitive, even with modern ad-
vances (Zavala and Anitescu, 2010). Traditional SDP-based methods with pre-tuned penalty pa-
rameters for static problems (Zohrizadeh et al., 2018; Madani et al., 2015; Liu et al., 2017) fail in
online tasks, where re-optimizing penalty terms for each new instance adds significant overhead.

A promising direction to mitigate these computational challenges further lies in meta-learning
techniques (Hospedales et al., 2021), which accelerate optimization by leveraging knowledge from
previously solved similar problems. This approach could enable faster convergence through in-
telligent initialization of key parameters, such as the penalty term parameter in penalized SDPs.
However, applying meta-learning to sequential rank-1 constrained SDPs requires addressing unique
theoretical and practical challenges, particularly in guaranteeing rank-1 recovery while maintaining
computational efficiency.

The fundamental challenge in sequential relaxed SDPs is achieving computationally efficient
rank-1 recovery in dynamic environments. Determining penalty terms that consistently enforce
rank-1 solutions is inherently complex (Mezura-Montes and Coello, 2011). Although static (Hsieh
et al., 2015), dynamic (Liu et al., 2016), and adaptive penalty methods (Wang et al., 2021; Krohling
and dos Santos Coelho, 2006; Fan and Yan, 2012; Huang et al., 2007; Wang et al., 2023) exist for
constrained optimization, most rely on stochastic adjustments and are designed for offline scenarios.
Moreover, traditional SDP relaxations use pre-tuned penalty terms for static problems, which be-
come infeasible in evolving settings, as they require re-optimization for every new instance. These
inefficiencies highlight the need for adaptive and automated frameworks that dynamically adjust
penalty parameters within single and across sequential tasks.

First-order methods, including augmented Lagrangian (Wang and Hu, 2023), accelerated gradi-
ent (Wang and Kılınç-Karzan, 2024), and conditional gradient algorithms, have significantly im-
proved SDP scalability. While these methods, along with penalization approaches for specific
combinatorial problems (Wang et al., 2019; Krechetov et al., 2019), excel at solving low-rank or
structured SDPs, they often require careful problem-specific designs. Our work complements these
advances by proposing a meta-learning framework that automatically adapts penalty matrices across
multiple tasks. Compatible with any differentiable SDP solver, our framework generalizes to diverse
problems, ranging from simple combinatorial optimization to complex AC-OPF instances.

Two key challenges arise: dynamically selecting penalty parameters for rank-1 constraints in
evolving problems, and exploiting similarities across sequential instances for efficient optimization.
We address these by proposing a framework that combines dynamic penalization with meta-learning
for solving sequences of relaxed SDPs. Our approach adaptively tunes penalties per task while
using meta-learning for intelligent parameter initialization, reducing computational costs. The main
contributions of this work are as follows.

Dynamic Penalization for Rank-1 Recovery: We develop a dynamic penalization framework
where Wt ∈ Sn represents the penalty parameter dynamically adjusted for each task t. This adjust-
ment is based on differentiation through the relaxed SDP problem, ensuring efficient enforcement
of the rank-1 constraint while maintaining computational feasibility. The framework leverages es-
tablished convergence guarantees, demonstrating a sublinear convergence rate (Lemma 1).

Meta-Initialization for Multi-Task SDP Optimization: To accelerate convergence across
tasks, we introduce a meta-learning approach that initializes the penalty parameter Wt,1 for each
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task t using task-specific features ϕt and historical data. This reduces the number of iterations
required Kt for convergence, especially when tasks exhibit similarities.

Dynamic Regret Analysis: Leveraging dynamic regret, we derive a bound on the average iter-
ations Kt required per task, showing that it scales as O

(
T−1/6

)
with the number of tasks T . The

bound also depends on the path length VT , which quantifies the rate of change between tasks, and
the relatedness to the task SW ∗ , highlighting the framework’s ability to adapt to task similarity for
improved efficiency (Lemma 2).

The organization of the paper is as follows: Sec. 2 introduces the problem formulation, Secs. 3
and 4 describe our method for single-task and multi-task scenarios, respectively, Sec. 5 presents the
experimental evaluations, and Sec. 6 concludes the paper. Due to space limitations, all proofs and
additional experimental details are provided in the online supplement (Al-Tawaha et al., 2024).

2. Problem Formulation

We consider an online sequence of polynomial optimization tasks {Tt}Tt=1 that arrive sequentially.
Each instance Tt represents varying operational conditions, commonly encountered in real-world
applications. To model this, we express each task as a QCQP:

minimize
xt∈Rn

;x⊤t M
t
0xt subject to x⊤t M

t
ixt ≤ ati, ; i = 1, . . . , p, x⊤t N

t
jxt = btj , ; j = 1, . . . , q.

(1)
where M t

0,M
t
i , N

t
j ∈ Sn are symmetric matrices representing the coefficients of the polynomial

functions for task Tt, and ati, b
t
j ∈ R are scalars associated with the inequality and equality con-

straints, respectively. To tackle the non-convex QCQP (1), we introduce an auxiliary variable Xt =
xtx

⊤
t ∈ Sn. This allows us to reformulate the problem as a rank-constrained SDP:

minimize
Xt∈Sn

f t
0(Xt) (2a)

subject to f t
i (Xt) ≤ ati, i = 1, . . . , p, (2b)

htj(Xt) = btj , j = 1, . . . , q, (2c)

Xt ⪰ 0, (2d)

rank(Xt) = 1, (2e)

where f t
i , h

t
j : Sn → R are twice continuously differentiable convex functions for i = 0, . . . , p

and j = 1, . . . , q. While the reformulation captures the original problem, the rank-one constraint
(2e) is non-convex, making the problem computationally challenging. To address this, we relax the
rank-one constraint and introduce a penalty term g (Xt;Wt), a µ-strongly convex function of Xt, to
encourage low-rank solutions. Here, Wt ∈ Sn represents designable parameters associated with the
penalty. The resulting penalized semidefinite SDP is formulated as:

minimize
Xt∈Sn

f t
0(Xt) + g(Xt;Wt) subject to f t

i (Xt) ≤ ati, i = 1, . . . , p,

htj(Xt) = btj , j = 1, . . . , q,

Xt ⪰ 0.

(3)

The penalty function g : Sn × Sn → R is defined to guide Xt toward being approximately rank−1
while maintaining the convexity of the problem. For large-scale instances, enforcing full positive
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semidefinite constraints on Xt is computationally prohibitive. To address this, we follow the ap-
proach in Madani et al. (2015) and impose positive semidefinite constraints on principal submatrices
of Xt corresponding to selected subgraphs. For each problem instance Tt, a cycle basis Ct

1, . . . , Ct
q

in the graph Gt, along with edges not included in these cycles, forms the set of subgraphs Ωt. The
reduced SDP and penalized reduced SDP relaxation are formulated as:

minimize
Xt∈Sn

f t
0(Xt) + g(Xt;Wt) subject to f t

i (Xt) ≤ ati, i = 1, . . . , p,

htj(Xt) = btj , j = 1, . . . , q,

Xt{Gt
s} ⪰ 0, ∀Gt

s ∈ Ωt,

(4)

where Xt

{
Gt
s

}
denotes the principal submatrix of Xt corresponding to the nodes in Gt

s. By restrict-
ing positive semidefinite constraints to these submatrices, the computational complexity is reduced
while preserving essential structural properties. The rank-1 constraint is imposed on the submatrices
as rank

(
Xt

{
Gt
s

})
= 1 for all Gt

s ∈ Ωt. This ensures the rank of the reconstructed matrix Xt is guar-
anteed to satisfy rank (Xt) ≤ max

{
rank

(
Xt

{
Gt
s

})
| Gt

s ∈ Ωt
}
, and since the rank of each sub-

matrix is constrained to one , it follows that rank (Xt) = 1. Note that there is a relationship between
(2), (3), and (4). Let us define f∗, f∗

SDP, f∗
r− SDP, and f∗

ε,r−SDP, and f∗
ε,SDP as the optimal solutions

of the original problem (2), the standard SDP relaxation “problem (3) without penalty term”, the
reduced SDP relaxation “problem (4) without penalty term, the penalized reduced SDP relaxation
(4) with rank-1 (feasible) solution, , and the penalized SDP relaxation (3) with rank-1 (feasible)
solution, respectively. By comparing the feasible sets of these optimization problems (Sojoudi and
Lavaei, 2014; Madani et al., 2015), we have: f∗

r− SDP ≤ f∗
SDP ≤ f∗ ≤ f∗

ε,SDP ≤ f∗
ε,r−SDP the

significance of this relationship is that it allows us to quantify how close our obtained solution is to
the global optimum. Specifically, we can define a global optimality guarantee as:

Gopt = 100−
f∗
ε,r−SDP − f∗

r−SDP

f∗
ε,r−SDP

× 100%. (5)

3. Dynamic Penalization for Single-Task Rank-1 Enforcement in SDP

For each task Tt in the online sequence {Tt}Tt=1, our framework operates in two interconnected
phases: a learning phase and a decision phase. In the learning phase, the objective is to iteratively
refine the penalty parameters Wt, ensuring efficient rank-1 feasibility enforcement. This phase
leverages a loss function L (Xt,Wt) that penalizes deviations from the rank-1 property, guiding Xt

toward being approximately rank-1. The optimization problem for updating Wt is formulated as:

minimize
W∈Sn

G(Wt) = L(X∗
t (Wt),Wt), (6)

where X∗
t is the optimal solution function obtained in the decision phase. This phase computes X∗

t

by solving the following penalized SDP problem:

X∗
t (Wt) = arg min

X̄t∈Sn
f t
0(X̄t) + g(X̄t;Wt) subject to f t

i (X̄t) ≤ ati, i = 1, . . . , p,

htj(X̄t) = btj , j = 1, . . . , q,

X̄t ⪰ 0,

(7)
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we assume that X∗
t (Wt) exists and satisfies the Linear Independence Constraint Qualification

(LICQ) at the optimal point. For instance, this condition holds in optimal power flow problem
(Hauswirth et al., 2018), which is the focus of our experimental validation.

We aim to iteratively refine Wt to guide Xt toward a rank-1 solution by optimizing the loss
function G(Wt) = L(X∗(Wt),Wt) with respect to Wt. Importantly, G(Wt) depends on the opti-
mal solution X∗

t (Wt) obtained during the decision phase, which solves a constrained optimization
problem. Gradient-based updates to Wt involve differentiating G(Wt), requiring the computation
of ∂Xt(Wt)

∂Wt
. However, this derivative is often challenging to compute. Even if the learning and

decision phases employ convex relaxations and differentiable functions (Liu et al., 2021), G(Wt)
remains generally nonconvex and non-differentiable due to the constraints in the decision phase
optimization, which can render the mapping Wt 7→ X∗

t (Wt) non-smooth. To overcome these chal-
lenges, our framework integrates subgradient methods, effectively managing cases where G(Wt) is
subdifferentiable or admits a generalized gradient.

At iteration k for task t, the penalty parameter is denoted as Wt,k, and the descent direction is
represented as gt,k. When G(Wt) is differentiable in a neighborhood of Wt,k, the descent direction
is given by the gradient gt,k = ∇G(Wt,k). In cases where G(Wt) is non-differentiable, gt,k is
defined following the approach in Xu and Zhu (2023) as the vector with the smallest norm in the
convex hull of the generalized gradient set ∂G(Wt,k, εk), where εk is a tolerance parameter. This
approach ensures a valid descent direction irrespective of the differentiability of G(Wt).

We iteratively update Wt over Kt iterations, computing the sequence {Wt,k, Xt,k}Kk=0. The
objective G(Wt) is optimized using a line search procedure to guarantee sufficient decrease at each
step. This iterative scheme progressively refines Wt,k, guiding X∗

t (Wt) toward satisfying the rank-1
constraint while solving the convex relaxation of the original problem. Furthermore, the iterative
process ensures that the rank-1 loss decays sublinearly with K, as shown in the following

Lemma 1 Let G (Wt) be the penalized objective function and gt,k the descent direction at iteration
k for task t. Assume G (Wt) is bounded below by Ginf and satisfies the sufficient decrease condition.
Then, after K iterations, the average gradient norm is bounded as:

1

K

K∑
k=1

∥gt,k∥ ≤

√
G (Wt,1)−G (Wt,K)

βσminK

where β ∈ (0, 1) is the line search parameter and σmin > 0 is a lower bound on the step size.

This result guarantees sublinear convergence of the gradient norm in O(1/
√
K), ensuring efficient

optimization of the penalized objective.

4. Meta-Learning for Multi-Task Rank-1 Enforcement in SDP

Solving SDP problems with rank-one constraints can be computationally intensive, especially in
multi-task settings where each task may require many iterations to converge. To address this chal-
lenge, we propose a meta-learning approach that leverages information from previous tasks to ac-
celerate optimization for new tasks. By capturing shared structures among tasks, we can improve
efficiency for solving new problems. The meta-learning framework operates in conjunction with the
learning phase, providing a strong starting point for optimization by predicting effective initializa-
tions Wt,1. This reduces the number of iterations required for interaction between the learning and
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Figure 1: Meta-learning framework for multi-task rank-one enforcement in SDP. The upper-level
optimization updates the penalty matrix Wt to minimize G (Wt), while the lower-level solves the
constrained SDP to compute Xt (Wt). The meta-model Mθ predicts an effective initialization
Wt, 1 using features ϕt, accelerating convergence and progressively enforcing the rank-one con-
straint.

decision phases. We train a meta-model Mθ, parameterized by θt, to predict effective initializations
Wt,1 for the penalty matrix based on task-specific features ϕt. This provides a strong starting point
for the optimization algorithm, reducing the number of iterations Kt needed for convergence (see
Figure (1)).

For each task t, we extract features ϕt that encapsulate critical characteristics. The meta-model
predicts the initial penalty matrix Wt,1 = Mθt (ϕt). Starting from Wt,1, we solve the penalized SDP
problem using an iterative scheme, refining Wt,1 to Wt,K after K iterations (detailed in Section 3).
We evaluate the meta-model’s performance using the meta-loss function:

ℓt (θt) = ∥Mθt (ϕt)−Wt,K∥2 .

The meta-model parameters θt are updated via an online learning algorithm to minimize the met-
aloss, resulting in parameters θt+1 for the next task. Specifically, we use Online Gradient Descent
(OGD) for convex loss functions (Besbes et al., 2015; Al-Tawaha and Jin, 2024) and Follow-the-
Perturbed-Leader (FTPL-A) for non-convex loss functions (Xu and Zhang, 2024). This iterative
update mechanism effectively transfers knowledge across tasks, reducing computational overhead
while maintaining high optimization quality. Algorithm (1) formalizes this framework.

Algorithm 1 Meta-Learning Framework for Initialization
Require: Number of problem instances T , initial meta-model parameters θ0

1: for t = 1 to T do
2: Receive problem instance Tt
3: Extract problem-specific features ϕt

4: Initialize penalty matrix using the meta-model: Wt,1 = Mθt(ϕt)
5: Solve problem (6) starting from Wt,1 using the method from Xu and Zhu (2023), and obtain

Wt,Kt
, Xt,Kt

after Kt iterations
6: Compute the meta-loss: ℓt(θt) = ∥Mθt(ϕt)−Wt,K∥2
7: Update the meta-model parameters θt+1 using an online learning algorithm to minimize ℓt(θt)
8: end for
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Our meta-learning framework accelerates convergence and reduces computational costs by lever-
aging shared structures across tasks and adapting initialization predictions dynamically. We now an-
alyze its performance through dynamic regret bounds and average iteration guarantees. Analyzing
the dynamic regret of the optimization process provides insight into the efficiency and adaptability
of our meta-learning framework across multiple tasks. The dynamic regret quantifies the cumulative
difference between the performance of our online algorithm and that of the best possible sequence
of decisions in hindsight: Rd

T =
∑T

t=1 ℓt (θt)−
∑T

t=1 ℓt (θ
∗
t ) , where θ∗t denotes the optimal param-

eters for task t. By bounding the dynamic regret, we derive performance guarantees that relate to
the expected average number of iterations required per task. The following lemma encapsulates our
main theoretical results.

Lemma 2 Consider a sequence of T optimization tasks {Tt}Tt=1 with a predictive model Mθt

parameterized by θt ∈ Θ for initialization. For both convex and non-convex meta-loss functions,
when θt is updated using OGD (convex case) or follow-the-Perturbed-Leader (FTPL) variant in Xu
and Zhang (2024) (non-convex case), the expected average number of iterations required per task
to achieve gradient norm less than δ is bounded by:

1

T

T∑
t=1

Kt ≤
Lmax

βσminδ2

(√
max{C1, C2}V 1/6

T T−1/6 + SW ∗

)
(8)

where VT =
∑T

t=2

∥∥θ∗t − θ∗t−1

∥∥ is the path length, S2
W ∗ = 1

T

∑T
t=1

∥∥Mθ∗t
(ϕt)−W ∗

t

∥∥2 is the task-
relatedness with respect to a sequence of changing comparator optimal solution {W ∗

t }Tt=1and C1 and
C2 are constants that depends on the diameter of parameter space D = maxθ1,θ2⊂Θ ∥θ1−θ2∥∞, and
a bound on the gradient norms ∥∇ℓt(θ)∥ ≤ ℓ,∀θt ∈ Θ,∀t, and Lmax = max1≤t≤T max1≤k≤Kt LG,t,k

is based on the local Lipschitz continuity at each iteration. Specifically, for each iteration k in task
t, the algorithm generates Wt,k. In a neighborhood around Wt,k′ , Gt(W ) is Lipschitz continuous
with Lipschitz constant LG,t,k.

Our analysis reveals two principal insights regarding the efficiency and adaptability of the pro-
posed framework. First, as the number of tasks T increases, the average number of iterations re-
quired per task decreases proportionally to T−1/6. This demonstrates that the meta-model becomes
increasingly effective at predicting suitable initializations as it learns from prior tasks, thereby re-
ducing the computational effort required for new tasks. Importantly, the sublinearity of our approach
holds as long as the path length VT grows sublinearly with T , a standard assumption in dynamic
regret analyses. The path length VT =

∑T
t=2

∥∥θ∗t − θ∗t−1

∥∥ quantifies the cumulative change in the
optimal parameters between successive tasks. A smaller VT suggests that the optimal parameters
vary minimally between tasks, indicating higher task similarity.

Second, task similarity plays a crucial role in optimization efficiency, as captured by both the
path length VT and the task-relatedness measure SW ∗ . The measure S2

W ∗ = 1
T

∑T
t=1 ∥Mθ∗t

(ϕt)−
W ∗

t ∥2 represents the average discrepancy between the meta-model’s predicted initializations and the
true optimal penalty matrices across tasks. When tasks are similar, their optimal penalty matrices
W ∗

t are also similar. The meta-model effectively captures and generalizes this shared structure using
task features ϕt, allowing it to predict initializations that are consistently closer to W ∗

t . This leads to
fewer iterations required for convergence, as the optimization begins closer to the optimal solution
for each task.
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5. Experiments

5.1. Dynamic penalization for single-task SDP: a Max-Cut case study

The Max-Cut problem seeks to partition the vertices of a graph G = (V,E) into two sets such that
the sum of the weights of edges between the sets is maximized. The standard SDP relaxation of this
problem replaces the binary constraints xi ∈ {−1, 1} with a semidefinite constraint on the Gram
matrix X :

maxX∈Sn
1
4 Tr(LX)

s.t. X ⪰ 0, Xii = 1, ∀i ∈ V,
(9)

ra
nk

-1
 lo

ss
 𝑛
2
−
∥
𝑋
∥ 𝐹2

Learning curve for G54700 case

iteration

ra
nk

Figure 2: Learning curve for G54700 illustrating
the effective rank of the solution across iterations.

where L is the Laplacian matrix of the graph
G = (V,E), defined as L = D − C, with D
being the degree matrix and C the adjacency
matrix containing the edge weights cij . Inter-
estingly, the Max-Cut SDP formulation demon-
strates differentiable behavior in the mapping
X (W ), enabling the use of cvxpylayer to
compute gradients. Our framework iteratively
refines penalty parameters W to enforce rank-1
feasibility. Each iteration consists of a learning
phase, which updates W to minimize:

G(W ) = λ1

(
n2 − ∥X∥2F

)
+ λ2Tr(LX),

and a decision phase, where Xis computed by solving the penalized SDP:

X ∈ arg max
X̄∈Sn

1

4
Tr(LX̄)−

(
Tr(WX̄) + µ∥X̄∥2F

)
, s.t. X̄ ⪰ 0, X̄ii = 1, ; ∀i ∈ V.

The process is repeated for K iterations, with feedback from the decision phase guiding updates
in the learning phase. Our method was tested on 10 small graphs from Set 2 of the Optsicom
Project benchmark 1, each containing n = 125 nodes and m = 375 edges. The results shown
in Table (1) demonstrate that our approach performs well, often matching the optimal solution or
the existing methods. Using the G54700 graph as an example, Figure (2) tracks how both the
rank-1 loss ( n2 − ∥X∥2F ) and effective rank improve over iterations. Unlike traditional SDP
methods, our approach naturally produces rank-1 solutions without randomization - a key advantage
for differentiable optimization as it enables end-to-end gradient flow without stochastic rounding,
making it ideal for deep learning pipelines.

5.2. Dynamic penalization for multi-task SDP: Optimal Power Flow case study

As a practical case study, we apply the proposed approach to the OPF problem for multi-task online
setting, where each task t corresponds to a unique operational condition. The OPF problem seeks to
minimize generation costs while satisfying operational constraints such as power balance, voltage
limits, and line flow capacities. To address scalability, we use the reduced SDP relaxation in (4),

1. http://grafo.etsii.urjc.es/optsicom/maxcut/
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Table 1: Comparison of Results Across Graphs and Methods. RUN-CSP results are from Toenshoff
et al. (2021), and Khalil et al. results are from Khalil et al. (2017).

Graphs Dyn. Penalized SDP RUN-CSP Khalil et al. Greedy Search Opt
G54100 110 110 108 80 110
G54200 108 112 108 90 112
G54300 106 106 104 86 106
G54400 112 112 108 96 114
G54500 110 112 112 94 112
G54600 110 110 110 88 110
G54700 112 110 108 88 112
G54800 108 106 108 76 108
G54900 108 108 108 88 110
G541000 110 110 108 80 112

where rank-1 feasibility is achieved when all submatrices corresponding to selected subgraphs have
rank-1. For each task t, the penalized reduced SDP formulation as:

min
Xt∈ Sn

∑
i∈G

cti
(
P t
Gi

)
+Tr (WtXt) ,

where cti and P t
Gi

are the generation cost and active power of generator i, respectively, and the
penalty term Tr (WtXt) enforces rank-1 solutions. The learning phase loss function, L (X∗

t ,Wt) =
∥X∗

t ∥∗−∥X∗
t ∥2, measures deviation from rank-1 feasibility. Our meta-learning model Mθt initial-

izes the penalty matrix Wt,1 based on task-specific features and prior tasks. Further details can be
found in Al-Tawaha et al. (2024). Through iterative updates, Wt,1 evolves to Wt,K , ensuring feasi-
bility and efficient rank-1 convergence. This process reduces computational overhead by learning
from previous tasks.

Figure (3) presents the performance of the proposed dynamic penalization framework for solv-
ing sequential OPF problems across tasks with varying levels of similarity. The left-hand plots
illustrate the number of iterations required to achieve rank-1 solutions, where all submatrices corre-
sponding to selected subgraphs also satisfy the rank-1 condition, as the number of tasks increases.
For highly similar tasks, the meta-model performance is similar to baseline methods, such as warm-
start and moving-average initializations, which is expected due to the limited variation between
tasks. However, as task similarity decreases, the advantages of the meta-model become more pro-
nounced.

For less similar tasks, the meta-model significantly outperforms the baselines. The baseline
methods often fail to converge, reaching the maximum allowable iterations without finding a feasi-
ble rank-1 solution. In contrast, the meta-model maintains robust performance, leveraging its ability
to generalize across tasks and adapt to dynamic changes. This efficiency is reflected in the consistent
reduction of iteration counts as the meta-model learns from an increasing number of tasks, aligning
with our theoretical findings.

The right-hand plots show the global optimality gap, as defined in (5). Across all levels of
task similarity, the proposed framework achieves a gap of 99.3 − 100%, underscoring its ability to
maintain high-quality solutions that closely approximate the global optimum. Notably, even for less
similar tasks where baselines diverge or fail to converge, the meta model preserves both feasibility
and optimality, ensuring reliable solutions.
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Figure 3: Comparison of initialization strategies across task similarity levels (level 1: high similarity
to level 4: low similarity). Left: iterations to rank-1 convergence. Right: global optimality gap.
Strategies include SDP neural network, moving average, and warm start from the previous task.

6. conclusion

In conclusion, we introduced a meta-learning framework that efficiently addresses rank-one con-
strained SDPs across multiple tasks by integrating dynamic penalization and meta-initialization
strategies. Our dynamic penalization approach adaptively adjusts the penalty matrix Wt through
differentiation of the relaxed SDP, ensuring effective rank-one enforcement with sublinear con-
vergence guarantees. The meta-initialization leverages task-specific features and historical data to
predict Wt,1, reducing the number of iterations Kt required for convergence, especially when tasks
exhibit high similarity. Through dynamic regret analysis, we established that the average number of
iterations per task scales as O

(
T−1/6

)
, contingent on the path length VT and the task-relatedness

measure SW ∗ , demonstrating the framework’s adaptability to task similarity.
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Appendix A. Missing proofs in the main text

A.1. Proof of Lemma 1

Establishing the Descent Condition: From Algorithm 1 in Xu and Zhu (2023), the line search
ensures that the step size σk satisfies the sufficient decrease condition:

G (Wk+1) = G
(
Wk − σkg

k
)
< G (Wk)− βσk

∥∥∥gk∥∥∥2 ,
where β ∈ (0, 1) line search parameter controls the sufficient decrease condition and gk is the
descent direction computed at iteration k. It is either the gradient ∇G (Wk) when X∗(Wk) is
differentiable in a neighborhood of Wk, or the vector with the smallest norm in the convex hull
convH (Wk, εk) which is closed, bounded and convex. Then, when X∗(Wk) is not differentiable.

gk = argmin
g∈convH(Wk,εk)

∥g∥. (10)

Summing the Descent over Iterations: Summing the sufficient decrease condition over itera-
tions k = 1 to K:

β

K∑
k=1

σk

∥∥∥gk∥∥∥2 < G (W1)−G (WK+1) , (11)

note that G (WK+1) ≥ Ginf , where Ginf is the lower bound of G
Establishing a Lower Bound on Step Sizes σk: To proceed, we need to ensure that the step

sizes σk are bounded below by a positive constant σmin > 0 for all k. From the proof of Theorem 3
in Xu and Zhu (2023), particularly Part (ii.b), it’s shown by contradiction that σk does not converge
to zero. The argument is as follows: Suppose that σk → 0. This would imply that Wk converges
to a point W̄ , and σk

∥∥gk∥∥ → 0, since Wk+1 = Wk − σkg
k. However, due to the properties of the

line search and the sufficient decrease condition, there exists a positive lower bound σmin such that
σk ≥ σmin for all k. This is because, when σk is sufficiently small, the quadratic approximation of
G ensures that the sufficient decrease condition cannot be satisfied unless σk is bounded away from
zero. Therefore, we have:

σk ≥ σmin > 0 for all k

Deriving the Average Gradient Norm: Using the lower bound σmin :

βσmin

K∑
k=1

∥∥∥gk∥∥∥2 ≤ β

K∑
k=1

σk

∥∥∥gk∥∥∥2 < G (W1)−G (WK+1) .

Next, we can write it as:

βσmin

K∑
k=1

∥∥∥gk∥∥∥2 < G (W1)−G (WK) .

Divide both sides by K and taking the square root of both sides and applying Jensen’s inequality
(since the square root is concave):

1

K

K∑
k=1

∥∥∥gk∥∥∥ ≤

√√√√ 1

K

K∑
k=1

∥gk∥2 ≤

√
G (W1)−G (WK)

βσminK
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Thus, we have derived:

1

K

K∑
k=1

∥∥∥gk∥∥∥ ≤

√
G (W1)−G (WK)

βσminK
.

Solving for K : Suppose we desire the average gradient norm to be less than a threshold δ :

K ≥ G (W1)−G (WK)

βσminδ2
. (12)

From Proposition 3 in Xu and Zhu (2023), G(W ) is Lipschitz continuous on B (W, ϵ). Specifi-
cally, there exists a Lipschitz constant LG = lG (W, ϵ) such that:

∣∣G(W )−G
(
W ′)∣∣ ≤ LG

∥∥W −W ′∥∥ , ∀W ′ ∈ B (W, ϵ) .

We consider the sequence {Wk} generated by the algorithm and utilize the local Lipschitz conti-
nuity in each step. For each iteration k, there exists a neighborhood B (Wk, ϵk) such that Wk+1 ∈
B (Wk, ϵk), and G(W ) is Lipschitz continuous on B (Wk, ϵk) with Lipschitz constant LG, k =
lG,k (Wk, ϵk). Thus, for each k:

G (Wk)−G (Wk+1) ≤ LG,k ∥Wk+1 −Wk∥ ,

Let Lmax be the maximum Lipschitz constant along the path:

Lmax = max
1≤k≤K

LG,k. (13)

Summing the inequalities over k = 1 to K − 1 :

G (W1)−G (WK) =
K−1∑
k=1

[G (Wk)−G (Wk+1)]

≤
K−1∑
k=1

Lk ∥Wk+1 −Wk∥

≤ Lmax

K−1∑
k=1

∥Wk+1 −Wk∥

= Lmax ∥WK −W1∥ .

(14)

Then, we can choose K to satisfy the following inequality

G (W1)−G (WK)

βσminδ2
≤ K ≤ Lmax ∥WK −W1∥

βσminδ2
. (15)

The lower bound ensures you perform enough iterations to achieve the desired average gradient
norm δ. The upper bound prevents you from overestimating the required iterations.
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A.2. Proof of Lemma 2

The dynamic regret is defined as:

Rd
T =

T∑
t=1

ℓt (θt)−
T∑
t=1

ℓt (θ
∗
t ) (16)

The meta loss is deifned as:
ℓt(θt) = ∥Mθt (ϕt)−Wt,K∥2 (17)

We define empirical task-relatedness as S2
W ∗ = 1

T

∑T
t=1

∥∥Mθ∗t
(ϕt)−W ∗

t

∥∥2 with respect to a
sequence of changing comparator optimal solution {W ∗

t }Tt=1. This measure quantifies the average
discrepancy between the meta-model’s predictions Mθ∗t

(ϕt) after K iterations of optimization and
the true optimal solutions W ∗

t across all tasks. The average squared initialization error is:

1

T

T∑
t=1

∥Mθt (ϕt)−Wt,K∥2 =
Rd

T

T
+ S2

W ∗ (18)

A.2.1. CONVEX LOSSES FUNCTION:

For online gradient descent algorithm, the dynamic regret for convex losses in θ can be bounded
from (Besbes et al., 2015, Theorem. 3) as:

Rd
T ≤ C1V 1/3

T T 2/3, (19)

where VN =
∑T

t=2

∥∥θ∗t − θ∗t−1

∥∥ is the path length, C1 is a constant that depends on the gradient
bound D = maxθ1,θ2⊂Θ ∥θ1 − θ2∥∞, and ∥∇ℓt(θ)∥ ≤ ℓ,∀θ ∈ Θ,∀t is a bound on the gradient
norms. So the average squared initialization error is bounded as:

1

T

T∑
t=1

∥Mθt (ϕt)−Wt,K∥2 =
Rd

T

T
≤

C1V 1/3
T T 2/3

T
+ S2

W ∗ , (20)

From your earlier convergence analysis, the number of iterations Kt for task t is bounded by:

Kt ≤
Lmax ∥Mθt (ϕt)−Wt,K∥

βσminδ2

The expected total number of iterations over T tasks:

1

T

T∑
t=1

Kt ≤
Lmax

∑T
t=1 (∥Mθt (ϕt)−Wt,K∥)

βσminδ2T
(21)

Using (20), Cauchy-Schwarz, and for non-negative a and b
√
a+ b ≤

√
a+

√
b inequalities

1

T

T∑
t=1

Kt ≤
Lmax

βσminδ2

(√
C1V 1/6

T T−1/6 + SW ∗

)
(22)
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A.2.2. NON-CONVEX LOSSES FUNCTION:

Using follow-the-perturbed learning-A algorithm proposed in Xu and Zhang (2024), the dynamic
regret for non-convex losses in θ can be bounded from (Xu and Zhang, 2024, Theorem. 4) as:

Rd
T ≤ O

(
(1 + αk

√
T + γkT )T

2
3 (VT + 1)

1
3

)
, (23)

when αk = O(1/
√
T ) and γk = O(1/T ) in addition to some constant representing D and G, Rd

T

can be bounded as:
Rd

T ≤ C2V 1/3
T T 2/3, (24)

then following the same procedure similar to Section. (A.2.1).

Appendix B. Experiment details

B.1. Problem formulation:

The OPF problem is formulated as follows Bose et al. (2015):

minimizeV HC0V,

subject to P k ≤ V HΦkV ≤ P̄k, k = 1, . . . , n,

Q
k
≤ V HΨkV ≤ Q̄k, k = 1, . . . , n,

W k ≤ V HJkV ≤ W̄k, k = 1, . . . , n,

V HM ijV ≤ F̄ij , i ∼ j,

V HT ijV ≤ L̄ij , i ∼ j,

X = V V H ⪰ 0,

(25)

where V ∈ Cn represents the voltage vector of the buses, where each entry corresponds to the
complex voltage at a bus in the network. The matrix C0 defines the objective function, which can
represent various goals such as minimizing power losses or production costs. The Hermitian ma-
trices Φk and Ψk capture the real and reactive power injection constraints at node k, respectively,
while the diagonal matrix Jk ensures the voltage magnitude constraints at the same node. Addition-
ally, the matrices M ij and T ij encode the real power flow and thermal losses, respectively, for the
transmission line connecting nodes i and j. The notation i ∼ j is used to indicate that nodes i and j
are connected by a transmission line. Each of these matrices captures network properties based on
the system’s admittance matrix Y , defined as:

Yij =


yii +

∑
j∼i yij , if i = j

−yij , if i ̸= j and i ∼ j

0, otherwise,

where yij = gij − ibij represents the admittance between connected nodes i and j, with gij ≥ 0
and bij ≥ 0. To facilitate convex relaxation, the problem is reformulated using the trace operator as
follows:
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minimize Tr (C0X) ,
subject to P k ≤ Tr (ΦkX) ≤ P̄k, k = 1, . . . , n,

Q
k
≤ Tr (ΨkX) ≤ Q̄k, k = 1, . . . , n

W k ≤ Tr (JkX) ≤ W̄k, k = 1, . . . , n,
Tr

(
M ijX

)
≤ F̄ij , i ∼ j,

Tr
(
T ijX

)
≤ L̄ij , i ∼ j,

X ⪰ 0, rank(X) = 1,

where X = V V H is a positive semidefinite matrix capturing the quadratic dependence of the objec-
tive and constraints on the voltage vector V . This reformulation transforms the original quadratic
constraints into linear constraints with respect to X . To compute the (i, j) th entries of these matri-
ces, we use the following relations for 1 ≤ k ≤ n and (p, q), (i, j) in the network graph G :

[Φk]ij =


1
2Yij =

1
2 (−gij + ibij) , if k = i,

1
2Y

H
ij = 1

2 (−gij − ibij) , if k = j,

0, otherwise;

[Ψk]ij =


−1
2i Yij =

1
2 (−bij − igij) , if k = i,

1
2iY

H
ij = 1

2 (−bij + igij) , if k = j,

0, otherwise;

[Mpq]ij =


gpq, if i = j = p,
1
2 (−gpq + ibpq) , if (i, j) = (p, q),
1
2 (−gpq − ibpq) , if (i, j) = (q, p),

0, otherwise;

[T pq]ij =


gpq, if i = j = p,

−gpq, if i = j = q,

0, if (i, j) = (p, q) = (q, p),

0, otherwise.

B.2. Meta model

The meta-learning model Mθt in Optimal Power Flow case study (5.2), which predicts effective ini-
tializations based on problem-specific features ϕt. This model, implemented as a Hermitian neural
network. The real part of the Hermitian matrix is generated by processing the input features through
a feed-forward neural network with ReLU activation functions. This branch includes a final linear
layer followed by a custom spdlayers.Eigen layer proposed in Xu et al. (2021) to ensure that
the output matrix is symmetric. Similarly, the imaginary part is generated through a parallel feed-
forward neural network with ReLU activations. After the final linear layer, a spdlayers.Eigen
layer produces a symmetric matrix, which is then adjusted in the forward pass to enforce skew-
symmetry. This is achieved by extracting the lower triangular part of the output, negating it, and
combining it with the upper triangular part to construct a skew-symmetric imaginary component.
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